Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Mol Mutagen ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115239

RESUMO

Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.

2.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643677

RESUMO

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Mutagenicidade , Mutação , Mutagênicos/toxicidade , Carcinógenos/toxicidade , Carcinogênese , Medição de Risco
5.
Toxicol Sci ; 184(1): 1-14, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34373914

RESUMO

Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next-generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11, and Tp53, were related to incidence of lung neoplasms at 2 years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. A total of 1586 mouse lung mutants with MFs >1 × 10-4 were recovered. The ratio of nonsynonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, nonsynonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.


Assuntos
Neoplasias Pulmonares , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Incidência , Pulmão/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Mutação
6.
Toxicol Sci ; 182(1): 142-158, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822199

RESUMO

The ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers. Previously, normal human breast DNA was analyzed by CarcSeq and metrics based on mammary-specific CDMs were correlated with tissue donor age, a surrogate of breast cancer risk. Here we report development of parallel methodologies for rat. The utility of the rat CarcSeq method for predicting neoplastic potential was investigated by analyzing mammary tissue of 16-week-old untreated rats with known differences in spontaneous mammary neoplasia (Fischer 344, Wistar Han, and Sprague Dawley). Hundreds of mutants with mutant fractions ≥ 10-4 were quantified in each strain, most were recurrent mutations, and 42.5% of the nonsynonymous mutations have human homologs. Mutants in the mammary-specific target of the most tumor-sensitive strain (Sprague Dawley) showed the greatest nonsynonymous/synonymous mutation ratio, indicative of positive selection consistent with clonal expansion. For the mammary-specific target (Hras, Pik3ca, and Tp53 amplicons), median absolute deviation correlated with percentages of rats that develop spontaneous mammary neoplasia at 104 weeks (Pearson r = 1.0000, 1-tailed p = .0010). Therefore, this study produced evidence CarcSeq analysis of spontaneously occurring CDMs can be used to derive an early metric of clonal expansion relatable to long-term neoplastic outcome.


Assuntos
Neoplasias da Mama , Animais , Mama , Feminino , Humanos , Mutação , Ratos , Ratos Sprague-Dawley , Ratos Wistar
7.
Environ Mol Mutagen ; 61(9): 872-889, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940377

RESUMO

There is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing. The first step toward this goal was to develop and validate an error-corrected next-generation sequencing method to analyze panels of hotspot cancer driver mutations (hCDMs). The "CarcSeq" method that was developed uses unique molecular identifier sequences to construct single-strand consensus sequences for error correction. CarcSeq was used for mutational analysis of 13 amplicons encompassing >20 hotspot CDMs in normal breast, normal lung, ductal carcinomas, and lung adenocarcinomas. The approach was validated by detecting expected differences related to tissue type (normal vs. tumor and breast vs. lung) and mutation spectra. CarcSeq mutant fractions (MFs) correlated strongly with previously obtained ACB-PCR mutant fraction (MF) measurements from the same samples. A reconstruction experiment, in conjunction with other analyses, showed CarcSeq accurately quantifies MFs ≥10-4 . CarcSeq MF measurements were correlated with tissue donor age and breast cancer risk. CarcSeq MF measurements were correlated with deviation from median MFs analyzed to assess clonal expansion. Thus, CarcSeq is a promising approach to advance cancer risk assessment and carcinogenicity testing practices. Paradigms that should be investigated to advance this strategy for carcinogenicity testing are proposed.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Análise Mutacional de DNA , Neoplasias Pulmonares/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Carcinogênese/patologia , Análise Mutacional de DNA/métodos , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Adulto Jovem
8.
PLoS One ; 15(9): e0238862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32898185

RESUMO

A model that recapitulates development of acquired therapeutic resistance is needed to improve oncology drug development and patient outcomes. To achieve this end, we established methods for the preparation and growth of spheroids from primary human lung adenocarcinomas, including methods to culture, passage, monitor growth, and evaluate changes in mutational profile over time. Primary lung tumor spheroids were cultured in Matrigel® with varying concentrations of erlotinib, a small molecule kinase inhibitor of epidermal growth factor receptor (EGFR) that is ineffective against KRAS mutant cells. Subtle changes in spheroid size and number were observed within the first two weeks of culture. Spheroids were cultured for up to 24 weeks, during which time interactions between different cell types, movement, and assembly into heterogeneous organoid structures were documented. Allele-specific competitive blocker PCR (ACB-PCR) was used to quantify low frequency BRAF V600E, KRAS G12D, KRAS G12V, and PIK3CA H1047R mutant subpopulations in tumor tissue residue (TR) samples and cultured spheroids. Mutant subpopulations, including multiple mutant subpopulations, were quite prevalent. Twelve examples of mutant enrichment were found in eight of the 14 tumors analyzed, based on the criteria that a statistically-significant increase in mutant fraction was observed relative to both the TR and the no-erlotinib control. Of the mutants quantified in erlotinib-treated cultures, PIK3CA H1047 mutant subpopulations increased most often (5/14 tumors), which is consistent with clinical observations. Thus, this ex vivo lung tumor spheroid model replicates the cellular and mutational tumor heterogeneity of human lung adenocarcinomas and can be used to assess the outgrowth of mutant subpopulations. Spheroid cultures with characterized mutant subpopulations could be used to investigate the efficacy of lung cancer combination therapies.


Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/patologia , Mutação , Organoides/patologia , Esferoides Celulares/patologia , Idoso , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Organoides/efeitos dos fármacos , Organoides/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
10.
Methods Mol Biol ; 2102: 395-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31989569

RESUMO

Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10-5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Análise Mutacional de DNA/métodos , Neoplasias/genética , Oncogenes/genética , Reação em Cadeia da Polimerase/métodos , Alelos , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Humanos , Mutação Puntual , Fluxo de Trabalho
11.
Environ Mol Mutagen ; 61(1): 152-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469467

RESUMO

Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Carcinogênese/genética , Mutação , Neoplasias/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/efeitos dos fármacos , Neoplasias/induzido quimicamente , Medição de Risco/métodos
12.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813596

RESUMO

Information regarding the role of low-frequency hotspot cancer-driver mutations (CDMs) in breast carcinogenesis and therapeutic response is limited. Using the sensitive and quantitative Allele-specific Competitor Blocker PCR (ACB-PCR) approach, mutant fractions (MFs) of six CDMs (PIK3CA H1047R and E545K, KRAS G12D and G12V, HRAS G12D, and BRAF V600E) were quantified in invasive ductal carcinomas (IDCs; including ~20 samples per subtype). Measurable levels (i.e., ≥ 1 × 10-5, the lowest ACB-PCR standard employed) of the PIK3CA H1047R, PIK3CA E545K, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E mutations were observed in 34/81 (42%), 29/81 (36%), 51/81 (63%), 9/81 (11%), 70/81 (86%), and 48/81 (59%) of IDCs, respectively. Correlation analysis using available clinicopathological information revealed that PIK3CA H1047R and BRAF V600E MFs correlate positively with maximum tumor dimension. Analysis of IDC subtypes revealed minor mutant subpopulations of critical genes in the MAP kinase pathway (KRAS, HRAS, and BRAF) were prevalent across IDC subtypes. Few triple-negative breast cancers (TNBCs) had appreciable levels of PIK3CA mutation, suggesting that individuals with TNBC may be less responsive to inhibitors of the PI3K/AKT/mTOR pathway. These results suggest that low-frequency hotspot CDMs contribute significantly to the intertumoral and intratumoral genetic heterogeneity of IDCs, which has the potential to impact precision oncology approaches.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Taxa de Mutação , Medicina de Precisão , Alelos , Feminino , Fluoresceína/metabolismo , Humanos , Pessoa de Meia-Idade , Mutação/genética , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas B-raf/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
13.
Environ Mol Mutagen ; 59(8): 715-721, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30255594

RESUMO

Somatic mutations accumulate in the human genome and are correlated with increased cancer incidence as humans age. The standard model for studying the carcinogenic effects of exposures for human risk assessment is the rodent 2-year carcinogenicity assay. However, there is little information regarding the effect of age on cancer-driver gene mutations in these models. The mutant fraction (MF) of Kras codon 12 GGT to GAT and GGT to GTT mutations, oncogenic mutations orthologous between humans and rodents, was quantified over the lifespan of B6C3F1 mice. MFs were measured in lung and liver tissue, organs that frequently develop tumors following carcinogenic exposures. The MFs were evaluated at 4, 6, 8, 12, 21, and 85 weeks, with the 12-week and 21-week time points being coincident with the conclusion of 28-day and 90-day exposure durations used in short-term toxicity testing. The highly sensitive and quantitative Allele-specific Competitive Blocker PCR (ACB-PCR) assay was used to quantify the number of mutant Kras codon 12 alleles. The mouse lung showed a slight, but significant trend increase in the Kras codon 12 GAT mutation over the 85-week period. The trend with age can be equally well-fit by several non-linear functions, but not by a linear function. In contrast, the liver GAT mutation did not increase, and the GTT mutation did not increase for either organ. Even with the slight increase in the lung GAT MFs, our results indicate that the future use of Kras mutation as a biomarker of carcinogenic effect will not be confounded by animal age. Environ. Mol. Mutagen. 59:715-721, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Envelhecimento/genética , Genes ras/genética , Fígado/citologia , Pulmão/citologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/genética , Humanos , Masculino , Camundongos , Mutação/genética , Neoplasias/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética
14.
Mutat Res Rev Mutat Res ; 777: 1-18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30115427

RESUMO

An accurate understanding of the clonal origins of tumors is critical for designing effective strategies to treat or prevent cancer and for guiding the field of cancer risk assessment. The intent of this review is to summarize evidence of multiclonal tumor origin and, thereby, contest the commonly held assumption of monoclonal tumor origin. This review describes relevant studies of X chromosome inactivation, analyses of tumor heterogeneity using other markers, single cell sequencing, and lineage tracing studies in aggregation chimeras and engineered rodent models. Methods for investigating tumor clonality have an inherent bias against detecting multiclonality. Despite this, multiclonality has been observed within all tumor stages and within 53 different types of tumors. For myeloid tumors, monoclonal tumor origin may be the predominant path to cancer and a monoclonal tumor origin cannot be ruled out for a fraction of other cancer types. Nevertheless, a large body of evidence supports the conclusion that most cancers are multiclonal in origin. Cooperation between different cell types and between clones of cells carrying different genetic and/or epigenetic lesions is discussed, along with how polyclonal tumor origin can be integrated with current perspectives on the genesis of tumors. In order to develop biologically sound and useful approaches to cancer risk assessment and precision medicine, mathematical models of carcinogenesis are needed, which incorporate multiclonal tumor origin and the contributions of spontaneous mutations in conjunction with the selective advantages conferred by particular mutations and combinations of mutations. Adherence to the idea that a growth must develop from a single progenitor cell to be considered neoplastic has outlived its usefulness. Moving forward, explicit examination of tumor clonality, using advanced tools, like lineage tracing models, will provide a strong foundation for future advances in clinical oncology and better training for the next generation of oncologists and pathologists.


Assuntos
Neoplasias/genética , Animais , Linhagem da Célula , Humanos , Neoplasias/etiologia , Neoplasias/patologia , Análise de Célula Única , Inativação do Cromossomo X
15.
Cell Stem Cell ; 22(6): 909-918.e8, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29779891

RESUMO

We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.


Assuntos
Antígenos Nucleares/genética , Colo/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Monoaminoxidase/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Alelos , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Criança , Humanos , Pessoa de Meia-Idade , Modelos Estatísticos , Monoaminoxidase/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adulto Jovem
16.
Environ Mol Mutagen ; 58(7): 466-476, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28755461

RESUMO

Large-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas. We report PIK3CA E545K MF measurements in those tissues, as well as in normal breast, normal thyroid, mammary ductal carcinomas, and papillary thyroid carcinomas. We report KRAS G12D and G12V MF measurements in normal colon. These MF measurements were integrated with previously published ACB-PCR data on KRAS G12D, KRAS G12V, and PIK3CA H1047R. Analysis of these data revealed a correlation between the degree of interindividual variability in these mutations (as log10 MF standard deviation) in normal tissues and the frequencies with which the mutations are detected in carcinomas of the corresponding organs in the COSMIC database. This novel observation has important implications. It suggests that interindividual variability in mutation levels of normal tissues may be used as a metric to identify mutations with critical early roles in tissue-specific carcinogenesis. Additionally, it raises the possibility that personalized cancer therapeutics, developed to target specifically activated oncogenic products, might be repurposed as prophylactic therapies to reduce the accumulation of cells carrying CDMs and, thereby, reduce future cancer risk. Environ. Mol. Mutagen. 58:466-476, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Variação Genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , Classe I de Fosfatidilinositol 3-Quinases , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Neoplasias/genética , Especificidade de Órgãos , Prevalência
17.
Reprod Toxicol ; 69: 187-195, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28279692

RESUMO

Females deficient in the glutamate cysteine ligase modifier subunit (Gclm) of the rate-limiting enzyme in glutathione synthesis are more sensitive to ovarian follicle depletion and tumorigenesisby prenatal benzo[a]pyrene (BaP) exposure than Gclm+/+ mice. We investigated effects of prenatal exposure to BaP on reproductive development and ovarian mutations in Kras, a commonly mutated gene in epithelial ovarian tumors. Pregnantmice were dosed from gestational day 6.5 through 15.5 with 2mg/kg/day BaP or vehicle. Puberty onset occurred 5 days earlier in F1 daughters of all Gclm genotypes exposed to BaP compared to controls. Gclm+/- F1 daughters of Gclm+/- mothers and wildtype F1 daughters of wildtype mothers had similar depletion of ovarian follicles following prenatal exposure to BaP, suggesting that maternal Gclm genotype does not modify ovarian effects of prenatal BaP. We observed no BaP treatment or Gclm genotype related differences in ovarian Kras codon 12 mutations in F1 offspring.


Assuntos
Benzo(a)pireno/toxicidade , Glutamato-Cisteína Ligase/genética , Ovário/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Genes ras , Glutationa/metabolismo , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Ovário/patologia , Gravidez , Maturidade Sexual/efeitos dos fármacos
18.
Environ Mol Mutagen ; 58(3): 122-134, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28326610

RESUMO

Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Carcinógenos/toxicidade , Óxido de Etileno/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação Puntual , Animais , Relação Dose-Resposta a Droga , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos , Fatores de Tempo
19.
Neoplasia ; 18(4): 253-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27108388

RESUMO

Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs), examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E). As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10(-3) to 4.6 × 10(-2)) in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas ras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Taxa de Mutação , Adulto Jovem
20.
Mutat Res Genet Toxicol Environ Mutagen ; 789-790: 53-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26232258

RESUMO

This study investigated whether Kras mutation is an early event in the development of lung tumors induced by inhalation of particulate vanadium pentoxide (VP) aerosols. A National Toxicology Program tumor bioassay of inhaled particulate VP aerosols established that VP-induced alveolar/bronchiolar carcinomas of the B6C3F1 mouse lung carried Kras mutations at a higher frequency than observed in spontaneous mouse lung tumors. Therefore, this study sought to: (1) characterize any Kras mutational response with respect to VP exposure concentration, and (2) investigate the possibility that amplification of preexisting Kras mutation is an early event in VP-induced mouse lung tumorigenesis. Male Big Blue B6C3F1 mice (6 mice/group) were exposed to aerosolized particulate VP by inhalation, 6h/day, 5 days/week for 4 or 8 weeks, using VP exposure concentrations of 0, 0.1, and 1 mg/m(3). The levels of two different Kras codon 12 mutations [GGT → GAT (G12D) and GGT → GTT (G12V)] were measured in lung DNAs by Allele-specific Competitive Blocker PCR (ACB-PCR). For both exposure concentrations (0.1 and 1.0mg/m(3)) and both time points (4 and 8 weeks), the mutant fractions observed in VP-exposed mice were not significantly different from the concurrent controls. Given that 8 weeks of inhalation of a tumorigenic concentration of particulate aerosols of VP did not result in a significant change in levels of lung Kras mutation, the data do not support either a direct genotoxic effect of VP on Kras or early amplification of preexisting mutation as being involved in the genesis of VP-induced mouse lung tumors under the exposure conditions used. Rather, the data suggest that accumulation of Kras mutation occurs later with chronic VP exposure and is likely not an early event in VP-induced mouse lung carcinogenesis.


Assuntos
Pulmão/efeitos dos fármacos , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Compostos de Vanádio/toxicidade , Administração por Inalação , Aerossóis/administração & dosagem , Aerossóis/toxicidade , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Códon/genética , Análise Mutacional de DNA/métodos , Relação Dose-Resposta a Droga , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos Transgênicos , Testes de Mutagenicidade , Material Particulado/administração & dosagem , Material Particulado/toxicidade , Reação em Cadeia da Polimerase/métodos , Fatores de Tempo , Compostos de Vanádio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...